Главная > Интеллектуальные системы > Системы искусственного интеллекта
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

7.7.2. Метазнание стратегий

В продукционных системах стратегии также представлены в форме метаправил, поскольку они затрагивают сами правила. Они являются изолированными и доступными для системы. Эвристические законы управления поиском решения используют эти метаправила в качественном и декларативном виде, вместо того чтобы использовать количественные оценки. С применением числовых оценочных функций связан риск ошибки: они плохо читаемы, отражаемый ими частичный порядок приводит к сложным вычислениям, любая модификация приводит к возможности появления ошибки.

Стратегии, заданные в форме метаправил, являются более четкими и определенными. Выводы метаправил указывают на действия, которые необходимо предпринять в рассматриваемой

ситуации. Таким образом они реализуют полезный потенциал, заключенный в множестве правил, и дают двойной эффект:

1) исключают определенные правила, не подходящие к данной ситуации, и тем самым уменьшают дерево поиска;

2) осуществляют частичную классификацию других правил, частично упорядочивая ветви дерева поиска.

Конечно же, можно и дальше увеличивать число уровней знания, строя дополнительные этажи над уже имеющимся и увеличивая это сооружение по мере роста интеллектуальности самой системы. При этом мы добиваемся большей общности, так как тот же интерпретатор получает возможность работать в различных областях, а также большей устойчивости, так как более развитые модели не чувствительны к изменениям базы элементарных знаний.

По этой причине система CRYSALIS (Engelmore, 1979) включает три отдельных уровня правил. Она предназначена для анализа протеинов, и размеры ее пространства поиска очень важны с комбинаторной точки зрения. Классический подход в данном случае неприменим. Правила сначала группируются в подмножества (неразобщенные). Каждое подмножество предназначено для определенной обработки и используется при выполнении соответствующих условий. Соответствие между конечными классами и подмножествами правил устанавливается с помощью правил заданий, которые составляют второй уровень знаний. Эти правила определяют, как следует выполнить данное задание нанлучшим образом.

Наконец, третий уровень относится к мета-метаправилам, которые определяют подцели и выражают их в зависимости от правил задания.

В примере, приведенном ниже, показан порядок выполнения системой одного из правил задания, в посылках которого содержится задание ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ, а также указывается, какому правилу должно быть отдано предпочтение при выполнении задания:

(см. скан)

Такой способ группировки правил обладает преимуществами и недостатками. Преимущество заключается в том, - что

управление осуществляется в самом правиле, каждое правило содержит собственные соображения по применению (см. систему AM Лената (1977)). Такая же руководящая идея (план) может быть легко обнаружена и в семействе правил. Недостаток заключается в том, что посылки правил могут оказаться очень громоздкими.

Однако существует и альтернативный путь решения этой проблемы, важной с точки зрения эффективности и ясности систем. Он состоит в разрешении все более и более сложных структур посылок в правилах. Эти вопросы затрагиваются при рассмотрении внутреннего представления наборов правил, описанного в разд. 7.5.4.

Работа Виленски (1981) «Метапланирование» посвящена управлению планами действий независимо от области применения. Он предложил метастратегии для разрешения конфликтов между планами, а также рассматривает рекуррентные и конкурентные планы. Одно и то же знание представлено в декларативной форме в двух различных программах РАМ и PANDORA. Одна из них составляет планы для решения задач, другая должна его понять и составить планы для участвующих в действии объектов.

<< Предыдущий параграф Следующий параграф >>
Оглавление