Главная > Интеллектуальные системы > Зрение роботов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

7. Обработка дискретных изображений

В предыдущей главе мы изучали линейные пространственно-инвариантные системы в непрерывной двумерной области. На практике мы имеем дело с изображениями, которые имеют ограниченные размеры и в то же время отсчитываются в дискретном наборе точек. Поэтому методы, разработанные до сих пор, необходимо приспособить, расширить и модифицировать так, чтобы их можно было применить и в такой области. Возникает также и несколько новых моментов, требующих аккуратного рассмотрения.

Теорема отсчетов говорит о том, при каких условиях по дискретному набору значений можно точно восстановить непрерывное изображение. Мы также узнаем, что происходит, когда условия ее применимости не выполняются. Все это имеет прямое отношение к разработке зрительных систем.

Методы, требующие перехода к частотной области, стали популярными частично благодаря алгоритмам быстрого вычисления дискретного преобразования Фурье. Однако нужно соблюдать осторожность, поскольку эти методы предполагают наличие периодического сигнала. Мы обсудим, как можно удовлетворить этому требованию и к чему приводит его нарушение.

7.1. Ограничение размеров изображения

На практике изображения всегда имеют конечные размеры. Рассмотрим прямоугольное изображение шириной и высотой Я. Теперь нет необходимости брать интегралы в преобразовании Фурье в бесконечных пределах:

Любопытно, что для восстановления функции нам необязательно знать на всех частотах. Знание того, что при представляет собой жесткое ограничение. Иными словами, функция, отличная от нуля только в ограниченной области плоскости изображения, содержит гораздо меньше информации, чем функция, не обладающая этим свойством.

Чтобы в этом убедиться, представим, что плоскость экрана покрыта копиями заданного изображения. Иными словами, мы расширяем наше изображение до периодической в обоих направлениях функции

где

Здесь — наибольшее целое число, не превосходящее х. Преобразование Фурье такого размноженного изображения имеет вид

С помощью подходящим образом подобранных множителей сходимости в упр. 7.1 доказывается, что

Следовательно,

откуда мы видим, что равна нулю всюду, кроме дискретного набора частот Таким образом, чтобы найти нам достаточно знать в этих точках. Однако функция получается из простым отсечением участка, для которого . Поэтому, чтобы восстановить нам достаточно знать лишь для всех Это — счетное множество чисел.

Обратите внимание на то, что преобразование периодической функции оказывается дискретным. Обратное преобразование можно представить в виде ряда, поскольку

Другой способ убедиться в этом — рассматривать функцию как функцию, получающуюся обрезанием некоторой функции для которой внутри окна. Иными словами, где функция выделения окна определяется следующим образом:

Преобразование Фурье — обычная свертка преобразования Фурье с преобразованием Фурье Последнее имеет вид

Таким образом, фурье-образ представляет собой сильно сглаженный фурье-образ Позже мы увидим, что подобную отфильтрованную функцию можно полностью задать подходящим образом выбранными отсчетами. Значения функции в точках, отличных от точек отсчета, легко находятся путем интерполяции между отсчетами.

<< Предыдущий параграф Следующий параграф >>
Оглавление