Главная > Интеллектуальные системы > Зрение роботов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

14.5. Классификация по ближайшей центроиде

Теперь предположим, что образцы каждого класса образуют шарообразный кластер и что кластеры, соответствующие различным классам, примерно одинакового радиуса и не слишком пересекаются друг с другом. В этом случае запоминать все образцы для каждого класса кажется расточительным. Вместо этого можно использовать для представления каждого класса его центр тяжести. Считается, что неизвестный вектор принадлежит тому классу, центр тяжести которого находится к нему ближе всего.

Использование этого метода позволяет значительно уменьшить и память, и вычисления. Более того, классы здесь разделяются гладкими границами. Отметим, что эти компоненты являются гипермногогранниками, ограниченными гиперплоскостями. (Гипермногогранники — это обобщение выпуклого многогранника для числа измерений больше трех. Они образуются пересечением полупространств.) Чтобы показать, что границы являются гиперплоскостями, предположим, что х — точка на границе между частями, содержащими центроиды X и Тогда

Возведя в квадрат обе части равенства, получим или Это уравнение линейно по х. Оно описывает гиперплоскость с нормалью проходящую через точку Таким образом, границей является гиперплоскость, ортогонально секущая пополам линию, соединяющую две центроиды.

Этот простой метод разделения пространства признаков хорошо работает в том случае, когда кластеры симметричны относительно вращения и примерно одинаковых радиусов или когда они хорошо раздельны.

Рис. 14.1. (см. скан) Диаграмма разброса площадей цитоплазмы и ядра для пяти обычных типов белых кровяных телец. Буква обозначает различные классы, подчеркнутая буква — центроиду. Штриховые линии показывают линейные границы, оптимально разделяющие классы. Несколько образцов классифицированы неверно. (Перепечатано из работы [487].)

<< Предыдущий параграф Следующий параграф >>
Оглавление