Главная > Разное > Современная квантовая химия. Том 2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3. Теория локализации электронов

Рассмотрим атом Не в его первом триплетном состоянии, и обозначим буквой Р вероятность нахождения одного и только одного электрона внутри сферы радиуса с центром на ядре атома Не. Когда радиус очень мал, соответствующая сфера почти всегда не содержит ни одного электрона и вероятность Р мала. Когда радиус очень велик, внутри соответствующей сферы почти всегда находятся оба электрона атома Не (т. е. два, а не один электрон). Опять вероятность Р нахождения одного электрона мала. Изображая Р в функции от мы получаем кривую по крайней мере с одним максимумом. На рис. 5 представлена кривая, которая была построена с использованием хиллерасовской волновой функции для вычисления Р [3]. Максимальное значение вероятности Р равно 0,93; оно наблюдается при Можно сказать, что сфера такого радиуса наилучшим образом разбивает на лоджии пространство атома Не для

Рис. 5. График вероятности нахождения одного электрона внутри сфер радиуса для атома Не.

триплетного состояния. До некоторой степени рассмотрение внутренней части сферы указанного радиуса является обобщением старой идеи о -оболочке, которая имелась в теории атома Бора; остальная часть вне рассматриваемой сферы соответствует понятию -оболочки в этой теории.

Понятие лоджий можно обобщить. Мы можем рассмотреть лоджии для вероятностей Р нахождения заданного числа электронов с определенными значениями их спинов. Чем большие значения может принимать указанная вероятпость Р, тем лучше будут построенные для нее лоджии.

Для тяжелых атомов в их основных состояниях мы, как правило, можем получить наилучшее разделение пространства на лоджии, если разобьем пространство системой концентрических сфер, центры которых располагаются в ядре и для которых в первой сфере находится пара электронов с противоположными спинами, во второй — четыре пары, в третьей — девять и т. д.

Деля объем пространства рассматриваемой лоджии на число находящихся в ней электронов, мы приходим к понятию объема V, приходящегося на отдельный электрон в соответствующей части атома. Пусть — средний электрический потенциал, который действует на этот электрон. Можно показать тогда [4], что

Понятие лоджий очепь удобно для описания электронной структуры молекул. Возьмем, к примеру, молекулу в ее основном состоянии. Хорошее разбиение на лоджии можно получить, рассматривая две сферы одинакового радиуса центры которых находятся в обоих ядрах молекулы. Рассчитывая вероятности нахождения пары электронов с противоположными спинами (именно одной пары электронов), можно определить радиусы сфер.

Используя волновую функцию Коулсона и Дункансона для молекулы находим, что максимальное значение указанной вероятности равно 0,91; оно достигается при

Обе рассматриваемые сферы, подобные -оболочкам свободных атомов, можно назвать лоджиями для ядер. Часть пространства вне этих сфер, в которой велика вероятность нахождения еще одной пары электронов, можно назвать лоджией для химической связи.

Наконец, в заключение применим понятие лоджий к описанию определенных областей в молекуле, в которых локализуются определенные группы электронов с некоторыми фиксированными направлениями спинов, если только молекула описывается некоторой заданной волновой функцией. Очевидно, при этом получаемые результаты не должны зависеть от того, в какой форме берется волновая функция. Расчеты соответствующих вероятностей следует проводить с помощью полной волновой функции.

Рис. 6. Разбиение объема молекулы на лоджии электроны со спином в электроны со спином

К сожалению, расчеты необходимых вероятностей становятся все более трудоемкими при переходе к большим молекулам.

Понятие лоджий очень полезно с точки зрения физической интуиции; оно позволяет легче понять, как следует выбирать исходную волновую функцию.

Когда вне расположенных по соседству двух атомных остовов можно найти область, в которой имеется высокая вероятность нахождения определенного числа электронов с заданными спинами, мы говорим, что имеется -электронная локализованная химическая связь между рассматриваемыми двумя атомами. Однако в некоторых случаях оказывается невозможным найти такую область по соседству с указанными двумя атомными остовами и необходимо распространить лоджию более, чем на два атомных остова, чтобы получить большую вероятность нахождения группы электронов с определенными спинами. В этом случае мы должны ввести концепцию -электроиной делокализованной связи, размазанной по атомным остовам.

Возьмем теперь молекулу для которой так или иначе (на основании экспериментальных данных, физической или химической интуиции и т. д.) известно, что в ней имеется 1) неподеленная пара электронов на атоме А; 2) двухэлектронная локализованная связь между атомами А и В; 3) пятиэлектронная локализованная связь между атомами В, С и Соответствующее разбиение объема молекулы на лоджии показано на рис. 6. Оно позволяет сразу составить выражение для волновой функции. Для пространственной функции имеем [6]

По этой пространственной функции можно составить выражение для полной волновой функции по формуле

<< Предыдущий параграф Следующий параграф >>
Оглавление