Главная > Математика > Гиперболические функции
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5. Соотношения между тригонометрическими и гиперболическими функциями

Наряду с обнаруженной нами в комплексной области связью между тригонометрическими и показательной функциями (формулы Эйлера)

в комплексной области имеется такное очень простая связь между тригонометрическими и гиперболическими функциями.

Напомним, что, согласно определению:

Если в тождестве (3) произвести замену на то в правой части получится то самое выражение, которое стоит в правой части тождества откуда вытекает равенство левых частей. То же самое имеет место для тождеств (4) и (2).

Итак

Путем деления обеих частей тождества (6) на соответствующие части тождества (5) и, наоборот, (5) на (6) получим:

Аналогичная замена в тождествах (1) и (2) и сравнение С тождествами (3) и (4) дают:

Наконец, из тождеств (9) и (10) находим:

Если в тождествах (5)-(12) положить где х — действительное число, т. е. считать аргумент чисто мнимым, то получим еще восемь тождеств между тригонометрическими функциями чисто мнимого аргумента и соответствующими гиперболическими функциями действительного аргумента, а также между гиперболическими функциями чисто мнимого Аргумента и соответствующими тригонометрическими функциями действительного аргумента:

Полученные соотношения дают возможность переходить от тригонометрических функций к гиперболическим и от

гиперболических функций к тригонометрическим с заменой мнимого аргумента действительным. Они могут быть сформулированы в виде следующего правила:

Для перехода от тригонометрических функций мнимого аргумента к гиперболическим или, наоборот, от гиперболических функций мнимого аргумента к тригонометрическим следует у синуса и тангенса мнимую единицу вынести за знак функции, а у косинуса отбросить ее вовсе.

Установленная связь замечательна, в частности, тем, что позволяет получить все соотношения между гиперболическими функциями из известных соотношений между тригономет рическими функциями путем замены последних гипербёли ческими функциями

Покажем, как это. делается.

Возьмем для примера основное тригонометрическое тож дество

и положим в нем где х — действительное число; получим:

Если в этом тождестве заменить синус и косинус гипербо лическими синусом и косинусом по формулам то получим или а это и есть основное тождество между выведенное ранее другим путем.

Аналогичным образом можно вывести все остальные формулы, в том числе формулы для гиперболических функций суммы и разности аргументов, двойного и половинного аргументов и т. , таким образом, из обычной тригонометрии получить «гиперболическую тригонометрию».

Если положить где х и у — действительные числа, то, применяя формулы для тригонометрических и гиперболических функций суммы аргументов, получим следующие соотношения:

Формулы (13), (14), (17), (18) получаются непосредственно после замены функций мнимого аргумента соответствующими функциями действительного аргумента; формулы (15), (16), (19), (20) получаются после некоторых преобразований.

Так, например, для формулы (15) имеем:

Путем замены в последних восьми формулах у на — у можно получить еще восемь формул:

Упражнения

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление